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the switch closes. Find the current through the voltage source during the inter­
val - oo < t < oo, assuming the capacitor to have been initially uncharged. 

18 At t = -1 capacitors C1 and C2 of Fig. 11.7 were seen to be discharging 
through the circuit containing the resistor R. At t = 0 the switch closed. 

Find the current through C1 for all t. 
J9t Solve the following differential equations for y(t) (t > 0), subject to initial 

values y(O+), y'(O+), .... 
a. y'(t) + y(t) = 1 [Ans: y = 1 + [y(O+) - 1]e-

1
] 

b. y"(t) + 5y'(t) + 6y(t) = 6 [Ans:y = 1 + [8y(O+) + y'(O+)- 81e-2
1 

+ [ ~- y'(O+) - ~y(O+)Je-31] 
c. y"(t) + 2y'(t) + y(t) =~sin t [Ans: y = [1 + y(O+) + y'(O+)]te-t 

+ [1 + y(O+ )]e-t - cost 
20 For each of the above problems derive an electric circuit obeying the same 
equation. Deduce driving functions for all t that would produce the responses 

quoted for t > 0. 
21 Find four different time functions all having [(p - ~)(p - 1)(p + 1)]-

1 
as 

their Laplace transform. For each time function state the strip of convergence. 

22 Show that the Laplace transform of the staircase function H(t) + H(t - T) 

+ H(t- ~T) + ... is given by 

1 0 <Rep. 
p(1 - e-Tp) 

23 A voltage v(t)H(t) is applied to a circuit that already contained energy 
before t = 0. As no information about the stimulus has been suppressed, no 
compensating postinitial data are needed. However, in order to get the total 
behavior f(t) it will be necessary to know about the natural behavior that is going 
on independently. It may be that the full history of earlier energy injection is 
unavailable, but it will suffice to know the situation immediately prior to the 
application of the voltage at t = 0. For example, the energy stored in each 
inductor and capacitor at t = 0- might be given; but suppose here that a 
sufficient number of preinitial values of the behavior are given: f(O- ), f'(O- ), 
f"(O- ), . . . . Show that the total behavior can be conveniently calculated by 
means of a special form of the Laplace transform defined by 

F _(p) = (., f(t)e-pt dt. Jo-
Work out the theorems for this transform, deducing, for example, that the deriva­

tive theorem isf'(t) :::> pF_(p) - f(O- ). 

t For a well-organized list of transforms of ratios of polynomials with denominators up 
to degree 5, which is the practical tool for soh·ing this sort of problem once a sound knowl­
edge of transform methods is attained, see P. A. l\1cCollum and B. F. Brown: "Laplac .. 
Transform Tables and Theorems," Holt, Rinehart and Winston, New York, 1965. 

Chapterl2 Relatil'es of tlte 

Fourier transform 

~!~:·::~~-~:7::~~::C!;::::~~::•:!~;:~:~~::C( ::~!a&r:g~3£!;:;::~~»:!:IT4 

Many of the linear transforms in common use have a direct connection 
with either the Fourier or the Laplace transform. The closest relation­
ship is with the generalizations of the Fourier transform to two or more 
dimensions, and with the Hankel transforms of the zero and higher orders, 
into which the multidimensional Fourier transforms degenerate under 
circumstances of symmetry. The Mellin transform is illuminated by 
previous study of the Laplace transform and is the tool by which the 
fundamental theory of Fourier kernels is constructed. Particularly 
impressive is the simplification of the Hilbert transform when it is studied 
by the Fourier transform, and finally there is the intimate relationship 
whereby the Abel, Fourier, and Hankel transformations, applied in 
succession, regenerate the original function. 

The two-dimensional Fourier transform 

The variable x may stand for some physical quantity such as time or fre­
quency, which is essentially one-dimensional, or it may be the coordinate 
in a one-dimensional physical system such as a stretched string or an 
electrical transmission line. However, in cases which are two dimen­
sional-stretched membranes, antennas and arrays of antennas, lenses 
and diffraction gratings, pictures on television screens, and so on-more 
general formulas apply. 

A two-dimensional function f(x,y) has a two-dimensional transform 
F(u,v), and between the two the following relations exist: 

F(u,v) = J _"'., J _"'., f(x,y)e-i21r(v.:z:+t·ul dx dy 

f(x,y) = J _"'., J _"',. F(u,v)ei21r(v.:z:+•ul du dv. 
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" 

:X: 

Fig. 12.1 A mountain (left) and a prominent Fourier component thereof (right). 

These equations describe an analysis of the two-dimensional function 
f(x,y) into components of the form exp [i21r(ux + vy)]. Since any 
such component elm be split into cosine and sine parts, we may begin by 
considering a cosine component cos [21r(ux + vy)]. 

As an example of a two-dimensional function consider the height of 
the ground at the geographical point (x,y), for example, over the area 
occupied by the mountain which is conventionally represented in Fig. 12.1 
by contours of constant height. The function cos [21r(ux + vy)] repre­
sents a cosinusoidally corrugated land surface whose contours of constant 

height coincide with lines whose equation is 

ux + vy = const. 

The corrugations face in a direction that makes an angle arctan (vju) 
with the x axis, and their wavelength is ( u 2 + v2)-!. If a section is made 
through the corrugations, in the x direction, it will undulate with a fre­
quency of u cycles per unit of x. Similarly, v may be interpreted as the 
number of cycles per unit of y, in the y direction. 

In Fig. 12.1 a prominent Fourier component of the mountain is shown. 
In the transform domain the complex component is characterized in 
wavelength and orientation by the point (u,v) in the uv plane and its 
amplitude by F(u,v). The interpretation of u and vas spatial frequencies 
is emphasized by dimensioning u-1 and v-1

, the wavelengths of sections 
taken in the x andy directions, respectively (see Fig. 12.1). The second 
of the Fourier relations quoted above asserts that a summation of 
corrugations of appropriate wavelengths and orientations, taken with 
suitable amplitudes, can reproduce the original mountain. The sinu- ·' 
soidal components, which must also be included, allow for the possibility 
that the corrugations may have to be slid into appropriate spatial phases. 
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Two-dimensional convolution 

The convolution integral of two two-dimensional functions f(x,y) and 
g(x,y) is defined by 

f ** g = J_ .... J_ .... f(x',y')g(x- x', y- y') dx' dy'. 

Thus one of the functions is rotated half a turn about the origin by revers­
ing the sign of both x and y, displaced, and multiplied with the other func­
tion, and the product is then integrated to obtain the value of the con 
volution integral for that particular displacement. 

The two-dimensional autocorrelation function is formed in the same 
way save that the sign reversal is omitted; thus 

f ** g = j_"', J_ .. ., f(x',y')g(x + x', y + y') dx' dy'. 

It is often convenient to be able to perceive ways in which a given func· 
tion can be expressed as a convolution. For example, the two-dimen· 
sional function 

2fl(x,y) = { ~ \x\ and \y\ < t 
elsewhere 

may be expressed as a product or as a convolution: 

2II(x,y) = IT(x)IT(y) = [IT(x) 5(y)] * [IT(y) 5(x)]. 

These two possibilities are illustrated in Fig. 12.2. 

y 
y 

=~ X 

X :X: 

2IT(r,!l) 

y ~~ "'- ~ /y 

* / ~ /- ~ 
:X: X 

Fig. 1.22 E:rpressing a tu•o diminsionalfunction as a product and as a convolution. 
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The theorems pertaining to the one-dimensional transform generalize 

readily, as shown briefly in Table 12.1. 
Figure 12.3 illustrates a number of two-dimensional Fourier transforms. 

The Hankel transform 
Two-dimensional systems may often show circular symmetry, for exam­
ple, optical systems are often constructed from components that, in 
themselves, are circularly symmetrical. Then again, waves spreading 
out in two dimensions from a source of energy exhibit symmetry for 
natural reasons. It may be expected that in these cases a simplification 
will result, for one radial variable will suffice in place of the two inde­
pendent variables x andy. The appropriate expression of such problems 
is in terms of the Hankel transform, a one-dimensional transform with 

Bessel function kernel. 
When circular symmetry exists, that is, when 

f(x,y) = f(r), 

where 
r2 = x2 + y2, 

Table 12.1 Theorems for the two-dimensional 

Fourier transform 

TheM em 

Similarity 

Addition 
Shift 

Modulation 

Convolution 
Autocorrelation 

Rayleigh 

Power 

Parse val 

J(x,y) 

f(ax,by) 

f(x,y) + g(x,y) 
f(x- a, y- b) 

f(x,y) cos wx 

f(x,y) * g(x,y) 
f(x,y) * J*( -x, -y) 

F(u,v) 

1 (u v) 
~F ~·b 
F(u,v) + G(u,v) 
e-2,-i(au+bv) F( u,v) 

iF ( u + ;,/ v) 

+iF(u-;,/v) 

F(u,v)G(u,v) 
\F(u,v)i2 

r: ... J: ... \J(x,y)\2dxdy = j_"'.., J: ... \F(u,v)i2dudv 

J:"' J _"'.., f(x,y)g*(x,y) dx dy 

= J:"' J:"' F(u,v)G*(u,v) du dv 

~~! ~~! \J(x,y)\2 
= 2:2: amn

2
, 

where F(u,v) = 2,2, amnl21l(u - m, v - n)] 

Differentiation 

Definite integral 

First moments 

c:x)m c:Jn f(x,y) 

!__ f(x,y) = J:(x,y) 
iJx 

a ' a/(x,y) = fy(x,y) 

()2 " 
axJ(x,y) = f%%(x,y) 

(}2 " 
ayJ(x,y) = fyy(x,y) 

()2 " ;----;-- f(x,y) = f%y(x,y) 

u(xa~Y ()2) . 
iJx2 + iJy2 f(x,y) 

(biu) m(27riV )nF(u,v) 

21riuF(u,v) 

~1rivF(u,v) 

-41!"2u2F(u,v) 

-41!"2v2F(u,v) 

-47r2uvF(u,v) 

-47r2(u2 + v2)F(u,v) 

J_"'.., j:..,f(x,y) dxdy = F(O,O) 

! "' !"' 1 ' xf(x,y) dx dy = --. F .. (0,0) 
-«> -«> -~1rt 

J _"'.., J_"'.., (x cos (J + y sin 8)f(x,y) dx dy 

1 ' ' = --.[cos (J F .. (0,0) + sin (J F .(0,0)] 
-~1rt 

F~(O,O) F:(o,O) 
(x) = -~1riF(O,O) (y) = -~1riF(O,O) 

J "' J"' 2l'( ) d d F~ .. (O,O) XJ X,y X y = --
-«> -«> -411"2 

Center of gravity 

Second moments 

J "' J"' .l'( ) d d F~.(O,O) XYJ x,y x y = --
-«> -«> -411"2 

(x2 + y2)f(x,y) dxdy = -- [F .. .,(0,0) + F •• (O,O)] ! "' !"' 1 " " 
-"' -«> 411"2 

Equivalent width 

Finite differences t 

Running means 

Separable product 

J _"'.., J _"'"' f(x,y) dx dy _ F(O,O) 

f(O,O) - J_"'.., J_"'..,F(u,v)dudv 

t:.%f(x,y) 
!::.x/f(x,y) 
!::.xx2f(x,y) 

[II(~) II(~) J *f(x,y) 

f(x)g(y) 

i~ sin 1ru F(u,v) 
-4 sin 1ru sin 1rV F(u,v) 
-4(sin 1ru)2F(u,v) 

ab sine au sine bv F(u,v) 

F(u)G(v) 

t The finite differences in the table are defined as follows: 
t:.xf(x,y) = f(x + j., y) - f(x - t. y) 

t1xv2f(x,y) = f(x + t. y + j.) - f(x - i• Y + i) - f(x + i, Y - i) + f(x - i. Y - i> 
t1n2f(x,y) = f(x + 1, y) - 2f(x,y) + f(x - 1, y). 
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1/z 2/l(u -lf2, v) + lfz 
2
/l(u + 1/z,v) Relatives of the Fourier transform 

A(u)IT(v) 

cos 'TTX 
v 

~u sinc2 x sine y u 

X v 
y y 

u u 
v X v 

y y 

6(u) 

y ~~~ 

X 

f 
u - 6(y) ~~~X ~ 
t y 

v 
I ~u 

• • ~ ~ ~ ~ 

Ill(v) ITI!Io. I 

~ n(v) 

- ~u 
X v 

X v~~~~~ 
u - y 

--

cos wy 6(x) 

~ r--- __./' 

26(x, y) l y~ ~X v 
u 

Fig. 12.3 Some two-dimensional Fourier transforms. 

then F(u,v) proves also to be circularly symmetrical; that is, 

F(u,v) = F(q), 

where 
q2 = u2 + v2. 

y ~~ 

u -I -...______ ~ I 

To show this, change the transform formula to polar coordinates and 

integrate over the angular variable.
7 Then the relations between the 

two one-dimensional functions f(r) and F(q) are 

7 That is, 

~~ ~~ ~~ ~2r 
X v ---

u - J(x,y)e-i2r(su+••l dx dy = f(r)e-ilrqr ceo :8-tl>lr dr dB 

/Ill /II I\ \\'-'- .-/' 

-~ -~ 0 0 

= !o"' f(r) [fo2r e-i2rqr co• 8 d8] r dr 

= 't..- !o ~ f(r)Jo('t..-qr)r dr 

exp [ -w(u
2 + v2

l} II 
whP.re x + iy = re• 8, u + iv = qeitl> and we have used the relation 

X v ~ 

u 

_....,.'-==--"~ 

1 ~21f J 0(z) =- e-i•cooiJ d~. 
211' 0 

~ ~ ~ 

y 
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F(q) = ~'II" Jo oo f(r)J o(~?rqr)r dr 

f(r) = ~'II" Jo oo F(q)J o(~?rqr)q dq. 
and 

We refer to F(q) as the Hankel transform (of zero order) of f(r) and note 
that the transformation is strictly reciprocal, as was the case when the 
kernels were cos alld sin. The kernel J 0, together with cos, sin, and 
others, is referred to as a Fourier kernel in the broad sense of a kernel 

associated with a reciprocal transform. 
The factors 2'11" in the above formulas may be canceled by suitable 

redefinition of the variables, but their retention follows logically from the 
form adopted for Fourier transforms. In physical situations the 2'11" in 
parentheses will be found to result from the measurement of q in whole 
cycles per unit of r. The 2'11" before the integral sign comes from the ele-

ment of area 21rr dr. A number of zero-order Hankel transforms are shown as two-dimen-
sional Fourier transforms in Fig. 12.4. Table 12.2. lists various Hankel 

transforms for reference. 

'ITaJ0(2'1Tarl 

y 

J1(2'1Tar) 
a~ r 

sin 2'7Tar 

M(ar) 

X v 

lf2/l(q -a) 

u 

rr(ia) 

II(q/2a) 
(a2 - q2)1;2 

a A(%-) 

Fig. 12.4 Some zero-order Hankel transforms shown as two-dimensional Fourier 

transforms. 

Relatives of the Fourier transform. 

1'able 12.2 Some Hankel transforms 

11 (;a) 
sin 2?rar 
-~----

r 

-! o(r - a) 

M(ar)t 

e-1t'rt 

1 

(az + r2)l 

1 

(az + r2)f 

1 

az + rz 
'ila2 

{az + rz)z 
4a4 

2)3 
(a2 + r (r) 
(a2 - r2) II 2a 

1 

r 

e-ar 

e-ar 

r 

o(r) = 2o(x.y) 

~r(fu) **Z 

f(r) 

aJ1('il?raq) 

q 

IT(q/'ila) 
(a2 _ q2)! 

?raJ o('il?raq) 

a-2A (~) 
e-"q• 
e-2traq 

q 
'il?re-2.-aq 

a 

2?rKo(2?raq) 

F(q) 

4?r2aqK l('il?raq) 

4?r2aqK1(2?raq) + 4?r 3a2q2Ko(2?raq) 

a2J z(2?raq) 

1 

q 

?rq2 

21ra 

(4?rzqz + a2)! 

2'11" 

(4?rzqz + a2)l 

1 

[J 1(21raq)j2 
2q• 

2a2 

= [cos-1 !.__ - !.__ (1 - _c__)t J II (!.__) 
2a 'ita 4a2 4a 

(
dzl!_ + ~ dF) = vzF 

-41T2rf(r) dq2 q dq 

r2e-rr1 (; - qz) e-"q' 

tIn this table M(x) = 2,- [ x-3 fox J 0(x) dx - x-
2
Jo(x)]. 
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Table 12.3 Theorems .for the Hankel transform 

Theorem 

Similarity 

Addition 
Shift 

Convolution 

Rayleigh 

Power 

Differentiation 

Definite integral 

Second moment 

Equivalent width 

f(r) F(q) 

f(ar) a-2F (!) 
f(r) + g(r) F(q) + G(q) 
Shift of origin destroys circular symmetry r .. (2r 
Jo Jo f(r')g(R)r' dr' d!J F(q)G(q) 

(R2 = r2 + r'2 - 2rr' cos IJ) 

Jo .. lf(r}i2r dr = Jo .. IF(q)l2q dq 

Jo .. f(r)g*(r)r dr = Jo .. F(q)G*(q)q dq 

Exercise for student 

211" Jo .. f(r)r dr = F(O) 

~ 
oo F"(O) 

21r r 2f(r)r dr = --
o -211"2 

211" Jo oo f(r)r dr F(O) 

f(O) = 21r !o .. F(q)q dq 

Many of the theorems for the two-dimensional Fourier transform can be 
restated in terms of the Hankel transform. The names of the corre­
sponding Fourier theorems are listed in Table 12.3 to allow comparison. 

Fourier kernels 

Let two functions f and g be related through the following integral equa­

tion whose kernel is k: 

g(s) = Jo oo f(x)k(s,x) dx, 

and let the kernel be such that a reciprocal relationship also holds; that is, 

f(x) = Jo oo g(s)k(s,x) ds. 

We know that 2 cos 21rax and 2 sin 21rax are such kernels, and a whole 
further set is furnished by a theorem established by Hankel, namely, 

2 

g(x) = Jo .. ds (xs)tJ.(xs) Jo .. g(x)(xs)iJ,(xs) dx, 

whence G(s) = Jo .. g(x)(xa)tJ.(xs) dx, 

2 Where f(x) is discontinuous, the left-hand side should be replaced by iff(x + 0) + 
f(x- 0)]. 
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and conversely, g(x) = }~ .. G(s)(xs)lJ .(xs) ds. 

By splitting off a factor si from G(s) and xl from g(x), that is, by putting 
G(s) = sW(s) and g(x) = x!j(x), we obtain the following alternative 
expressions of the above formulas: 

F(s) = Jo oo xf(x)J.(xs) dx 

f(x) = Jo oo sF(s)J.(xs) ds. 

The case in which v = 0 was derived earlier from the two-dimensional 
Fourier transform under conditions of circular symmetry. 

It is interesting that by taking v = ±i and using the relations 

( 2)! . 
Ji(z) = 1rZ Sill Z, J_!(z) = (~zY cos z, 

we recover the known kernels 2 cos 21rax and 2 sin 21rax, which shows that 
the cosine and sine transform formulas are included in Hankel's theorem. 

The three-dimensional Fourier transform 

Undoubtedly physical systems have three dimensions, but for reasons of 
theoretical tractability, one seeks simplifications. The classical example­
in which Fourier analysis in three dimensions has nevertheless had to be 
faced is the diffraction of X rays by crystals. The formulas are 

F(u,v,w) = J_ .. oo J_00

00 
J_00

00 
f(x,y,z)e-i2>r(:z:u+~v+zwl dx dy dz 

f(x,y,z) = J_00

00 
J_oo,. J_00

00 
F(u,v,w)ei 2r(u:z:+t·u+wzl du dv dw. 

Multidimensional transforms, should they be encountered, will be 
recognized without difficulty. By taking x and s to be vectors whose com­
ponents are (xt.x 2, ••• ) and (s1os 2, ••• ), we have the following con­
venient vector notation for n-dimensional transforms: 

F(s) = J J ... J _
00

00 
f(x)e-i21r.-s dx1 dx2 , dxn. 

In cylindrical coordinates r, IJ, z where 

x + iy = rei8 , 

the three-dimensional transform may be expressed in terms of the trans­
form variables s, t!J, w, where 

u. + it• = se'•, 

j 
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by the formulas 

("' (2"!"' G(8,cf>,w) = Jo Jo _., g(r,8,z)e-i2r[orcos(B-•>+wzlrdrd8dz 

("' (2"!"' g(r,O,z) = J 0 J 0 -., G(8,cf>,w)ei2r[srcos (B-•>+wzl8 d8 dcf> dw. 

These results are derivable directly from the basic formulas by substituting 

and 
g(r,O,z) = f(x,y,z) 

G(8,cf>,w) = F(u,v,w). 

Under circular symmetry, that is, when f is independent of 0 (and 
hence F independent of cf>), we find by writing 

and 

that 

h(r,z) = f(x,y,z) 
H(8,w) = F(u,v,w) 

H(8,W) = 211" r 00 f 00 

h(r,z)Jo(211"8r)e-i2rwzr dr dz }o - oo 

h(r,z) = 211" r 00 f 00 

H(8,w)Jo(211"8r)ei2rwz8 d8 dw. Jo -oo 

To obtain this result we use the formula derived earlier for the Hankel 
transform of zero order. 

Under cylindrical symmetry, that is, whenfis independent of both 0 and 
z, being a function of r only, say f(x,y,z) = k(r) and F(u,v,w) = K(8,w), 
then 

K(8,w) = K(8) ~(w), 

where K(8) = 211" Jo oo k(r)Jo(27r8r)r dr. 

In spherical coordinates r,O,cf>, with transform variabies 8,8,<I>, we have 

x = r sin 8 cos cf> 
u = 8 sin 8 cos <I> 

y=r~n8~ncf> 

v=8~n8~n<I> 

z = r cos 0 
w = 8 cos 8. 

Writing f(x,y,z) = g(r,O,cf>) and F(u,v,w) = G(8,8,<I>), we find 

~) - r 
00 

r ... r 
2

" g(r,8,cf>) . d d8 dcf>. 
G(8,8,'1' - }o Jo Jo 9 s+sin9oin8co•<•-<~>llr2 sm 8 r 

e-i2rsr[C08 COB 

r 00 f" r 2 .. 
g(r,O,cf>) = }o lo lo G(8,8,<I>) 

ei2.-sr[cos 9cos 8+sin 9oin 8co8 <•-<1>))82 sin 8 d8 de d<I>. 

With circular symmetry, that is, when f(x,y,z) is independent of cf>, we 
b.ave, writing f(x,y,z) = h(r,8) and F(u,v,w) = H(8,8), 

H(8,8) = 211" Jo"' Jo" h(r,O)Jo(211"8T sin 8 sin O)e-i2""'0 •flco•8r2 sin 8drd0. 
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With spherical symmetry, we have, writing f(x,y,z) = k(r) and 

F(u,v,w) = K(8), 

K(8) = 411" Jo .. k(r) sine (28r) r 2 dr, 

k(r) = 411" Jo"' K(8) sine (28r) 82 d8. 

A few examples of three-dimensional Fourier transforms are given in 
Table 12.4. Many more can be generated by noting that 

f(x)g(y)h(z) :::> F(u)G(v)H(w), 

where f(x), F ( u), and the like are one-dimensional Fourier transform pairs. 
This result is proved by expressing f(x)g(y)h(z) in the form 

f(x) ~(y) ~(z) * ~(x)g(y) ~(z) * ~(x) ~(y)h(z) 
and then applying the convolution theorem in three dimensions. As 
various cases of this kind we have 

f(x)g(y)h(z) :::> F(u)G(v)H(w) 
f(x)g(y) :::> F(u)G(v) ~(w) 

f(x) :::> F(u) ~(v) ~(w) 
k(r)h(z) :::> K(8)H(w) 

k(r) :::> K(8) ~(w) 

Table 12.4 Some three-dimensional Fourier transformst 

f(x,y,z) F(u,v,w) 

3~(x - a, y - b, z - c) point ei2r(au+bv+cw) 

e-r<z'ta'+y'tb'+•'tc') Gaussian abce-r<a'u'+b'v'+c'w') 

3IT(x,y,z) 
2II(x,y) 

II(x) 

ll(x)II[(y2 + z2)!] 

rr(i) 
(1 - Jri)II (~) 

(1 - r 2)II (~) 
e-r/R 

h-Ra 
e-1rr2 

cube 

bar 

slab 

disk 

ball 

sine u sine v sine w 

sine u sine v ~(w) 

sine u ~(v) ~(w) 

. J,[1r(v2 + w2)!] 
smc u 

2(v2 + w 2)! 

sin 21rs - 21rs cos 211"8 
211"283 

1r 12 2(1 - cos 211"8) - 211"8 sin 211"8 

3 (211") 4 s4 

81r (3 - (21rs) 2] sin 211"8 - 3(27rs) cos 'l1r.Y 

(211") 6 s 6 

6 

(1 + 47r2R2s2)2 

e-"'"' 

t Jn thi~ table r2 = x2 + .11' + z2 and s2 = u2 + v' + w2
• 


